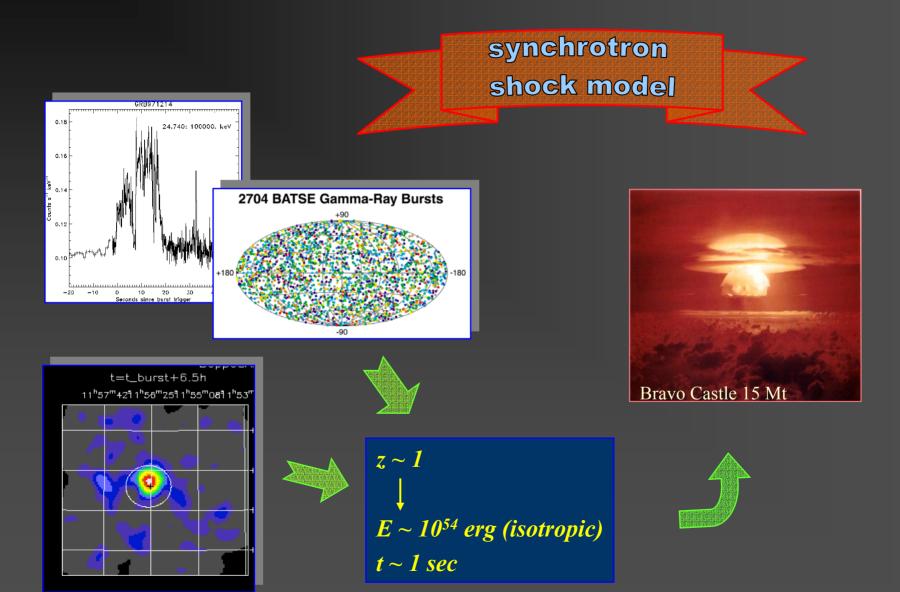
# Collisionless GRB Shocks

uncovering the underlying physics

Mikhail Medvedev

University of Kansas

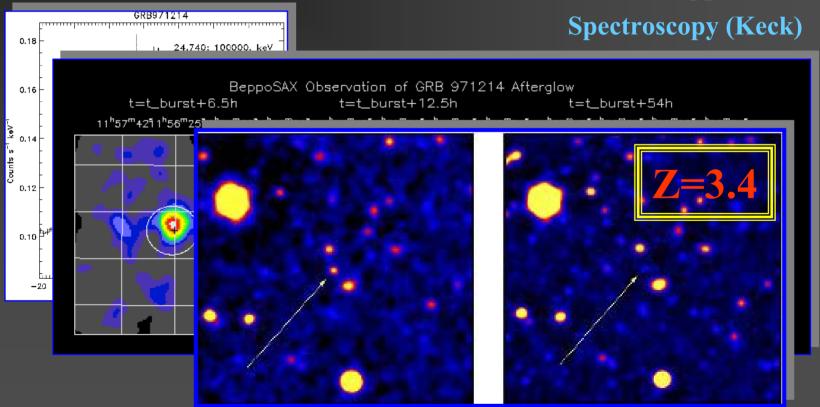
### Do we understand GRBs?



## Gamma-Ray Bursts

GRBs are 10 billion light years away!!!

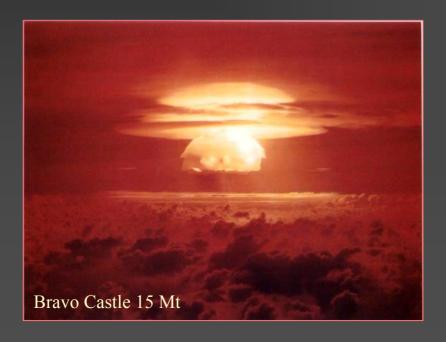
Burst trigger (BATSE) GRB 971214 Localization (Beppo-SAX) Spectroscopy (Keck)



# Energetics

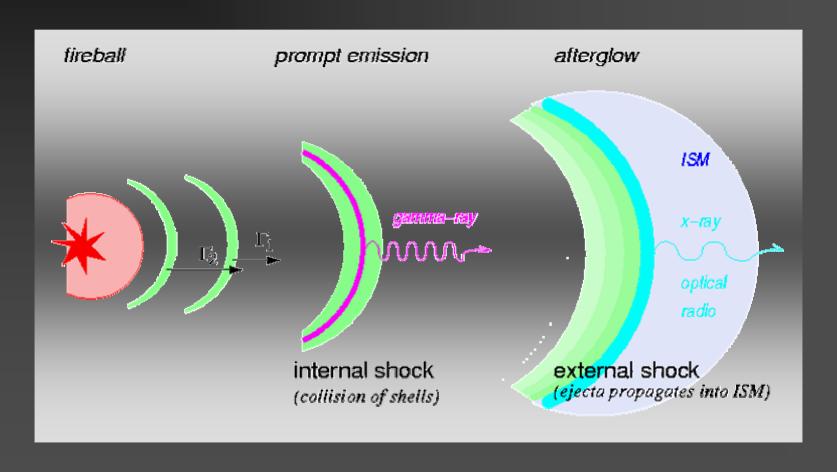
```
Total energy = (# photons/second/area)*(duration)*(4\pi R^2)
= 10^{52} - 10^{54} erg > M_{SUN} c<sup>2</sup>
```

tremendous amount of energy is released within a second



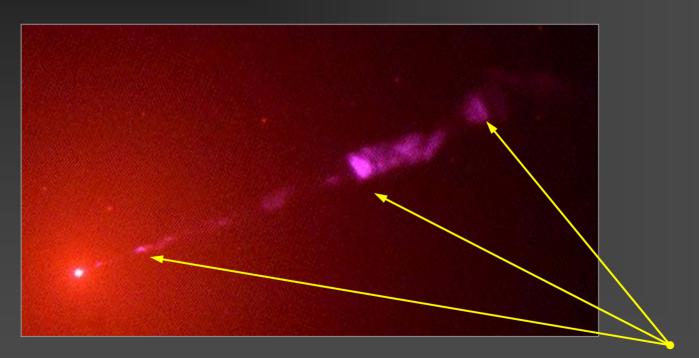
### "Standard Model"

--- GRB Shock Model ---



## Shocks in Jets - Knots

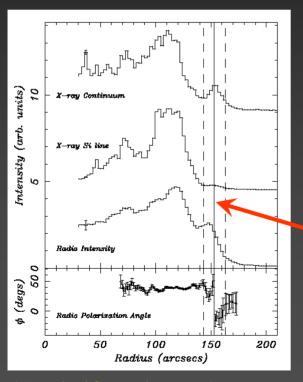
**Jet from M87** 

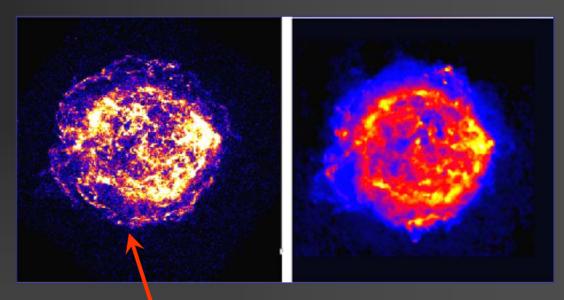


knots

## Supernova Shock

#### Cassiopea A





Chandra 2001 & VLA 1997 images

forward shock

(Gotthelf, et al. 2001)

### **GRB Shock Model Postulates**

Rankine-Hugoniot jump conditions

- > Near-equipartition magnetic fields
- > Near-equipartition energy in electrons



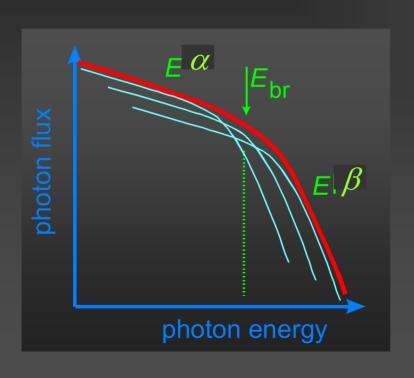
**Synchrotron radiation** 



Light curves

### **GRB Shock Model Prediction**

#### **Predicted** γ-ray spectrum

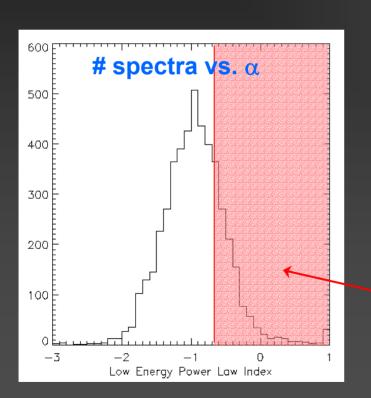


#### **Composite synchrotron**

- two power-laws
- > smooth break
- $\rightarrow \alpha < -2/3$

# Warning signal #1

Observed GRB spectra often agree with theory, but ...



"Line of Death"

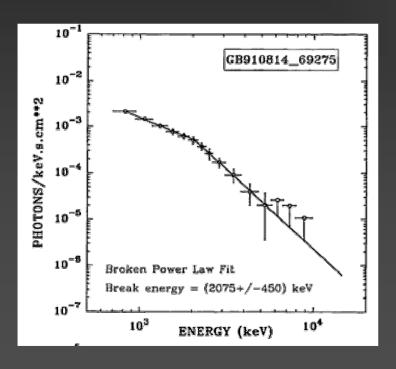
spectra cannot be harder than *E*<sup>-2/3</sup> below break

forbidden:  $\alpha > -2/3$ 

(Preece et al. 2000, ApJS)

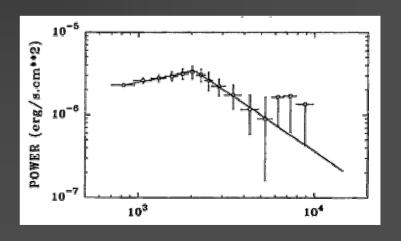
# Warning signal #2

Observed GRB spectra often agree with theory, but ...



#### **Broken Power-Law**

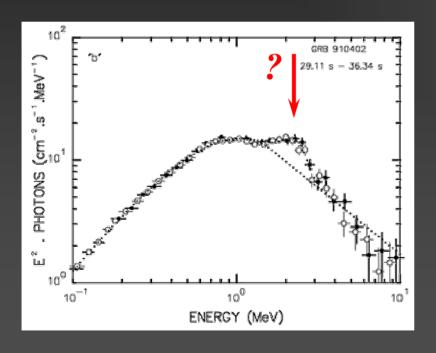
some spectral have very sharp spectral break



(GRANAT: Pelaez, et al. 1994, ApJ)

# Warning signal #3

Observed GRB spectra often agree with theory, but ...



"GRB Lines"

few spectra exhibit a spectral feature

(KONUS: Barat, et al. 2000, ApJ)

## Warning signals #4, #5, ...

```
#4 Electrons cool fast \rightarrow \alpha < -3/2

#5 If break due to cooling \rightarrow \alpha - \beta = 1/2

#6 Acceleration of e \rightarrow universal \beta

#7 Why \varepsilon_e \sim 1?

#8 Why \varepsilon_B \sim 1?

#9 Collisions are rare \rightarrow what is a shock?
```

### What to do?

If you cannot solve a problem --- IGNORE it!

New physics! (at least for some astronomers)

Astrophysical shocks are collisionless, NOT collisional



## Collisionless Regime

Particles communicate via Electric and Magnetic fields

Plasma:

- Nonlinear waves
- Turbulence
- Wave particle interaction
- Particle kinetics

Unlike a hydrodynamic shock, there is *no single theory* of a collisionless shock

### Shock Zoo

magnetized

unmagnetized

quasi-parallel

quasi-perpendicular

#### Laminar shocks

(nonlinear waves)

Alfvenic

ion-acoustic

magnetosonic

#### **Turbulent shocks**

(effective collisions)

ion-acoustic

Langmuir (E-static)

fire hose (magnetic)

two-stream [Weibel] (B-static)

Mach



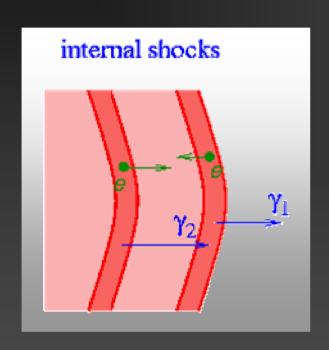


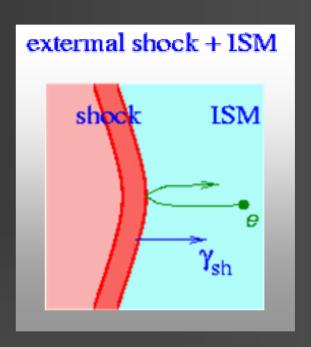


### Collisionless Shock

Generation of magnetic fields

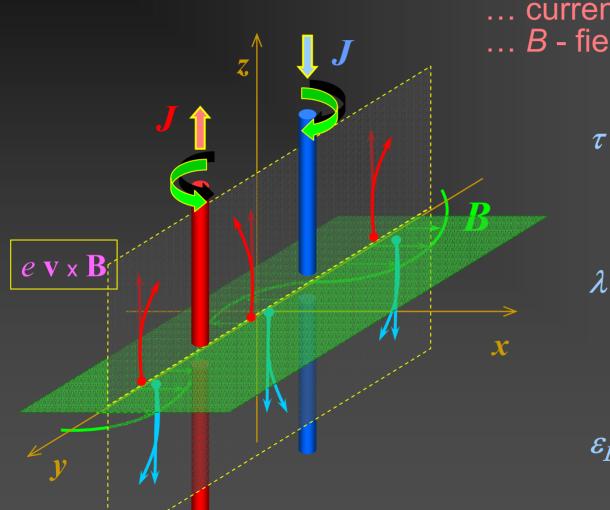
# Zooming-in a Shock





Electrons and protons form counter-propagating streams in front of the shock - *unstable* 

# Weibel (Two-stream) Instability



... current filamentation ... B - field produced ...

$$au = \gamma_{\rm sh}^{1/2}/\omega_{p}$$
 ~ 10<sup>-8</sup> ... 10<sup>-2</sup> s

$$\lambda = \gamma_{\text{th}}^{1/2} \mathbf{c} / \omega_p$$
 $\sim 10 \dots 10^7 \text{ cm}$ 

$$\varepsilon_B \sim 0.1$$

(Medvedev & Loeb, 1999, ApJ)

## Two-Stream Instability. Theory

· Kinetic equation:

$$\partial_t f + \mathbf{v} \cdot \partial_{\mathbf{x}} f + (e/c)\mathbf{v} \times \mathbf{B} \cdot \partial_{\mathbf{p}} f = 0$$

• Distribution function:  $f = F(\mathbf{p}) + \tilde{f}_i$  specify  $\mathsf{F}_i o \mathsf{Dispersion}$  relation for the instability:

$$1 = \frac{c^2 k^2}{\omega^2} + \frac{\omega_{\rm p}^2 / \hat{\gamma}}{\omega^2} \left( G(\beta_{\perp}) + \frac{1}{2} \frac{\beta_{\parallel}^2}{(1 - \beta_{\perp}^2)} \left| \frac{c^2 k^2 - \omega^2}{\omega^2 - c^2 k^2 \beta_{\perp}^2} \right| \right)$$

Here  $\beta_{\|} = p_{\|}/\hat{\gamma}mc$ ,  $\beta_{\perp} = p_{\perp}/\hat{\gamma}mc$ ,  $\hat{\gamma} = (1-\beta_{\|}^2-\beta_{\perp}^2)^{-1/2}$ ,  $G(\beta_{\perp}) = (2\beta_{\perp})^{-1}\ln[(1+\beta_{\perp})/(1-\beta_{\perp})]$ , and  $p_{\|}$  are averaged particle momenta (Yoon & Davidson 1987, Phys. Rev. A, 35, 2718)

Instability occures for k:

$$0 < k^2 < k_{
m crit}^2 \equiv \left(rac{\omega_{
m p}^2}{\hat{\gamma}c^2}
ight) \left|rac{eta_{
m l}^2}{2eta_{
m L}^2(1-eta_{
m L}^2)} - G(eta_{
m L})
ight|$$

Most unstable mode for γ<sub>1</sub> ≫ γ<sub>⊥</sub> ≫ 1:

$$\Gamma_{\rm max}^2 \simeq \frac{\omega_{\rm p}^2}{\gamma} \left(1 - 2\sqrt{2}\frac{\gamma_{\perp}}{\gamma}\right), \qquad k_{\rm max}^2 \simeq \frac{1}{\sqrt{2}}\frac{\omega_{\rm p}^2}{\gamma_{\perp}c^2} \left(1 - \frac{3}{\sqrt{2}}\frac{\gamma_{\perp}}{\gamma}\right)$$

Saturation:

$$k_{\text{max}}\rho \sim 1 \implies \epsilon_B = \frac{B^2/8\pi}{mc^2n(\bar{\gamma}-1)} \sim \frac{(\bar{\gamma}+1)}{2\sqrt{2}\bar{\gamma}} \quad \text{simulations}: \quad \frac{\epsilon_{Bp} \sim \eta_p \sim 0.1 - 0.01}{\epsilon_{Be} \sim (m_e/m_p)\eta_e \sim 10^{-4}}$$

Kinetic equation:

$$\partial_t f + \mathbf{v} \cdot \partial_{\mathbf{x}} f + (e/e)\mathbf{v} \times \mathbf{B} \cdot \partial_{\mathbf{p}} f = 0$$

• Distribution function:  $f = F(\mathbf{p}) + \tilde{f}$ , specify F,  $\rightarrow$  Dispersion relation for the instability.

$$1 = \frac{c^2 k^2}{\omega^2} + \frac{\omega_{\rm p}^2/\hat{\gamma}}{\omega^2} \left( G(\beta_{\perp}) + \frac{1}{2} \frac{\beta_{\parallel}^2}{(1 - \beta_{\perp}^2)} \left| \frac{c^2 k^2 - \omega^2}{\omega^2 - c^2 k^2 \beta_{\perp}^2} \right| \right)$$

Here  $\beta_{\|} = p_{\|}/\hat{\gamma}mc$ ,  $\beta_{\perp} = p_{\perp}/\hat{\gamma}mc$ ,  $\hat{\gamma} = (1-\beta_{\|}^2-\beta_{\perp}^2)^{-1/2}$ ,  $G(\beta_{\perp}) = (2\beta_{\perp})^{-1}\ln[(1+\beta_{\perp})/(1-\beta_{\perp})]$ , and  $p_{\|}$  are averaged particle momenta (Yoon & Davidson 1987, Phys. Rev. A, 35, 2718)

Instability occures for k:

$$0 < k^2 < k_{
m crit}^2 \equiv \left(rac{\omega_{
m p}^2}{\hat{\gamma}c^2}
ight) \left|rac{eta_{
m l}^2}{2eta_{
m L}^2(1-eta_{
m L}^2)} - G(eta_{
m L})
ight|$$

Most unstable mode for γ<sub>|</sub> ≫ γ<sub>⊥</sub> ≫ 1:

$$\Gamma_{\rm max}^2 \simeq \frac{\omega_{\rm p}^2}{\gamma} \left(1 - 2\sqrt{2}\frac{\gamma_\perp}{\gamma}\right), \qquad k_{\rm max}^2 \simeq \frac{1}{\sqrt{2}}\frac{\omega_{\rm p}^2}{\gamma_\perp c^2} \left(1 - \frac{3}{\sqrt{2}}\frac{\gamma_\perp}{\gamma}\right)$$

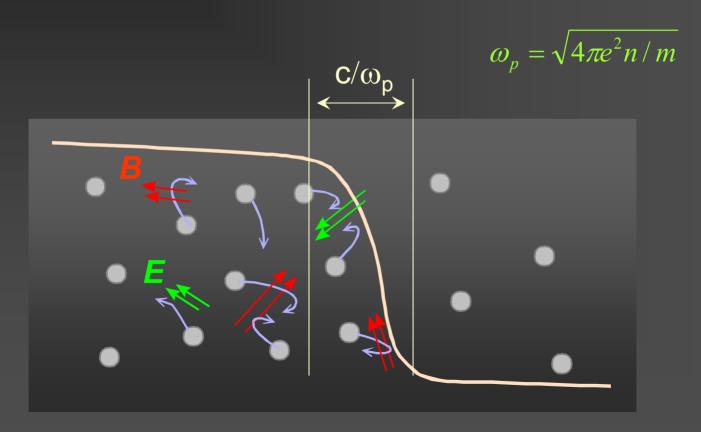
Saturation:

$$k_{\text{max}}\rho \sim 1 \implies \epsilon_B = \frac{B^2/8\pi}{mc^2n(\bar{\gamma}-1)} \sim \frac{(\bar{\gamma}+1)}{2\sqrt{2}\bar{\gamma}} \quad \text{simulations}: \quad \frac{\epsilon_{Bp} \sim \eta_p \sim 0.1 - 0.01}{\epsilon_{Be} \sim (m_e/m_p)\eta_e \sim 10^{-4}}$$

### Turbulent Collisionless Shock



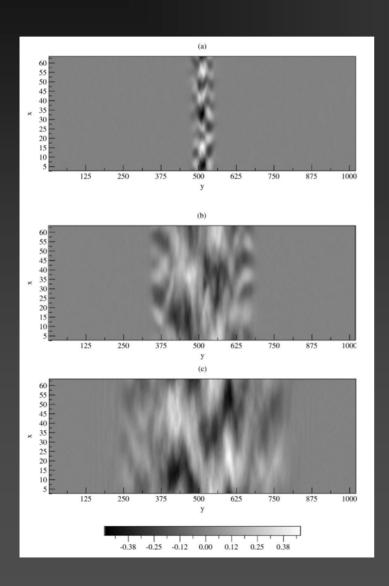
Electric and/or magnetic fields are needed to randomize particles



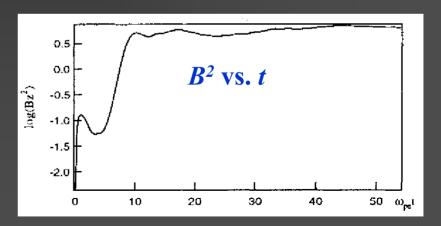
### **Simulations**

- USA/Portugal (2D & 3D !!!)
  - Silva, Fonseca, Mori, et al. ... 2000-...
- ➤ Japan (2D)
  - Kazimura, Sakai, & Bulanov ... 1998-...
- Italy (2D)
  - Califano, Pegoraro, Bulanov, et al. ... 1998
- > USA
  - Yang, Arons, & Langdon ... 1994
  - Gruzinov (same code as Kazimura et al.) ... 2001

### **B**-field Structure

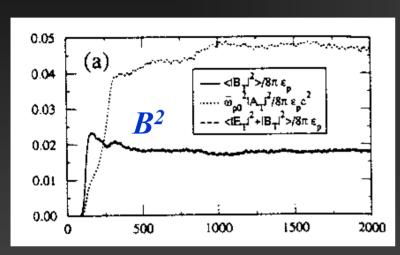


Field grows on small (skin-depth) scales



(Kazimura, et al. 1998, ApJL)

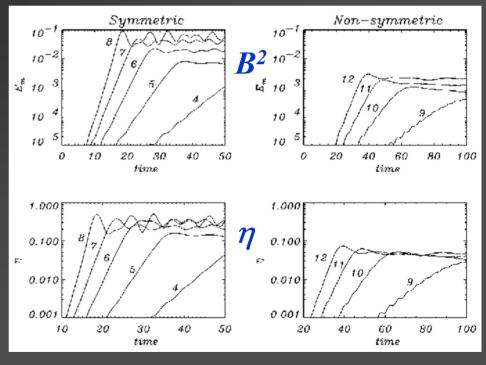
# Energy, Efficiency, ...



(Yang, Arons, Langdon 1994)

Efficiency is high:  $\eta = \text{few } \%$ 

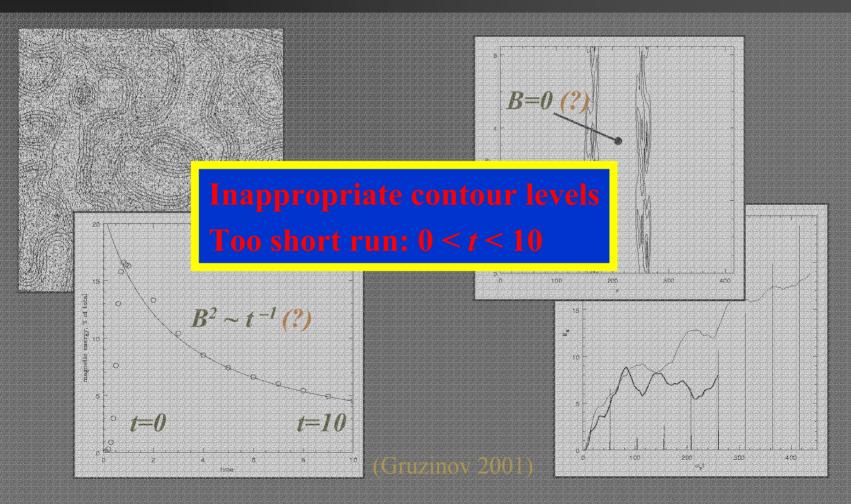
### B-field does not dissipate



(Califano, et al. 1998, PRE)

### A Conflict?

Some 2D simulations seem to show field decay ???



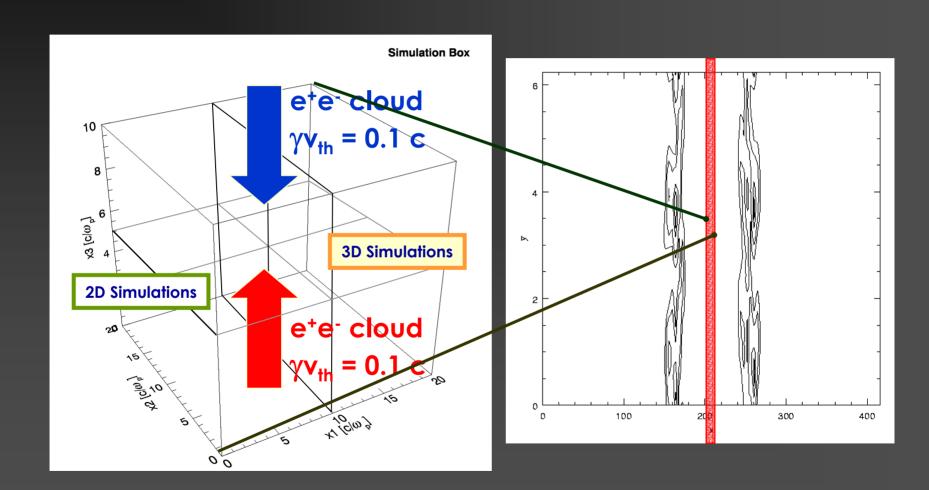
## Fully 3D PIC e<sup>-</sup>e<sup>+</sup> Simulations

R. Fonseca, J. Tonge, R.G. Hemker, <u>L.O. Silva,</u> J.M. Dawson, W.B. Mori, M.V. Medvedev

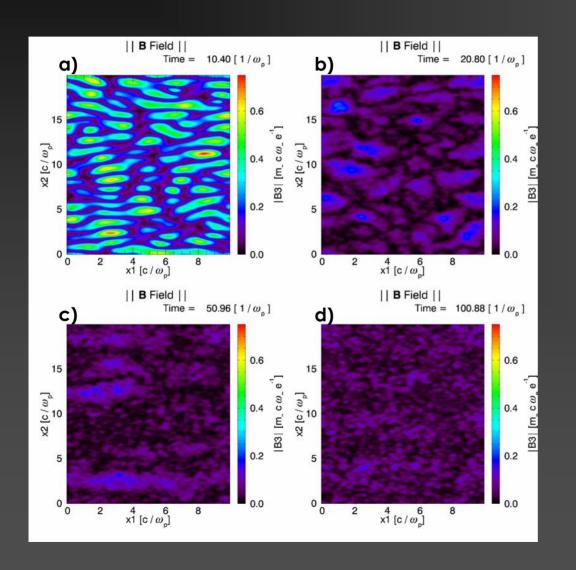
### OSIRIS Code

- Massively parallel, 3D, PIC code
- Fully object oriented code design
- Fully parallel multi-platform implementation

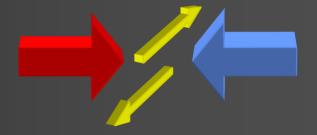
### **Simulation Parameters**



# Edge-on: Magnetic Field

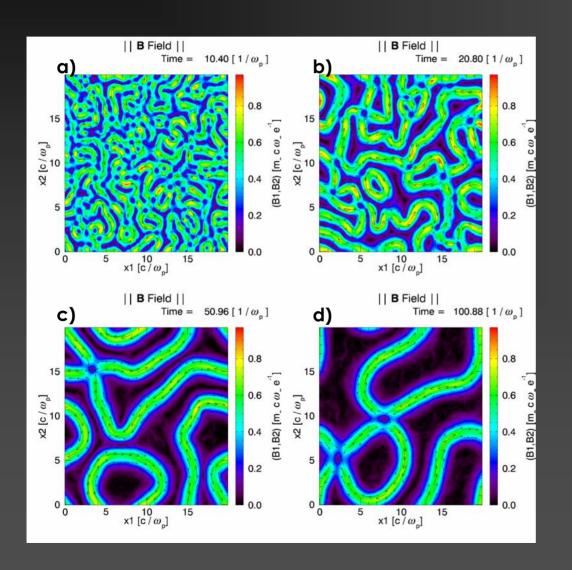


$$\gamma v = 0.6 c$$

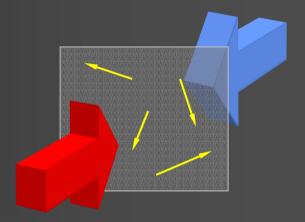


- a)  $t = 10.1 \omega_{p}^{-1}$ ,
- b)  $t = 20.8 \, \omega_p^{-1}$ ,
- c)  $t = 50.96 \, \omega_p^{-1}$ ,
- d)  $t = 100.88 \omega_p^{-1}$

# Face-on: Magnetic Field



$$\gamma v = 0.6 c$$

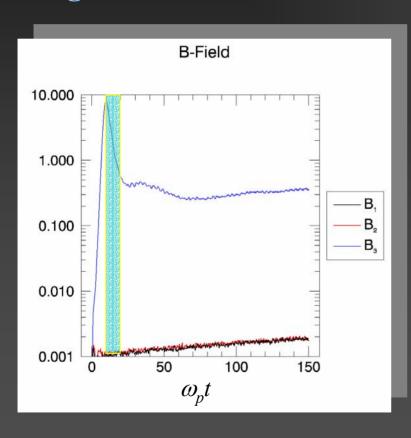


- a)  $t = 10.1 \omega_{p}^{-1}$ ,
- b)  $t = 20.8 \, \omega_p^{-1}$ ,
- c)  $t = 50.96 \, \omega_{\rm p}^{-1}$ ,
- d)  $t = 100.88 \, \omega_p^{-1}$

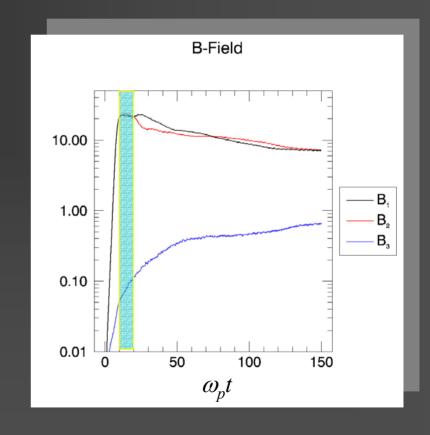
# 2D Magnetic Field Strength

 $\gamma v = 0.6 c$ 

#### Edge-on



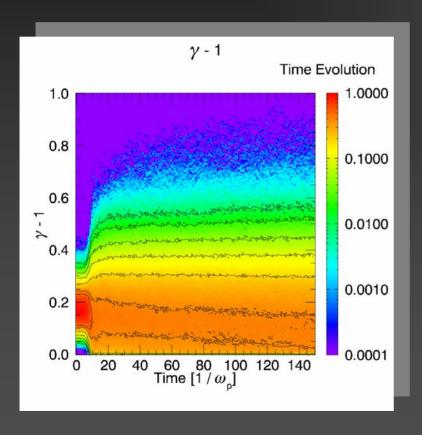
#### Face-on



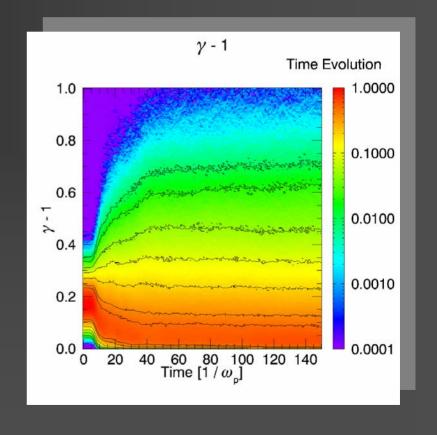
### Particle Distribution

 $\gamma v = 0.6 c$ 

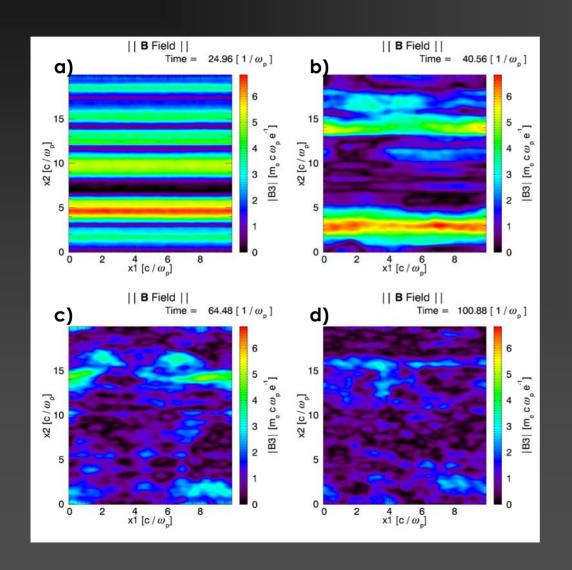
#### Edge-on



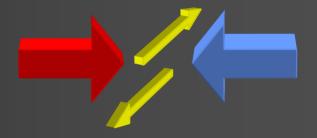
#### Face-on



# Edge-on: Magnetic Field

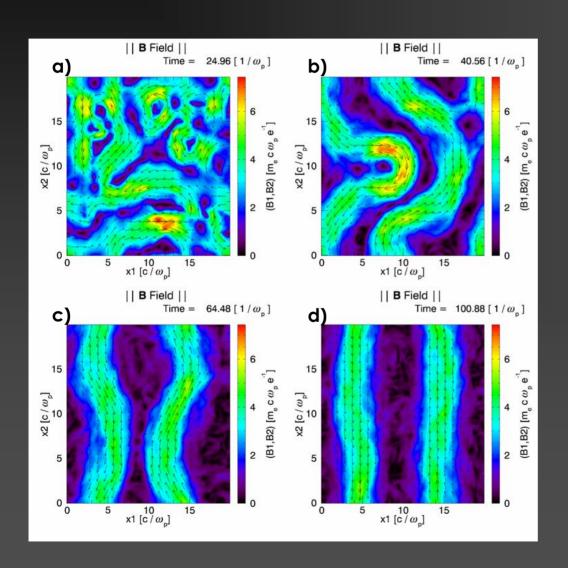


$$\gamma \mathbf{v} = 10 \ \mathbf{c}$$

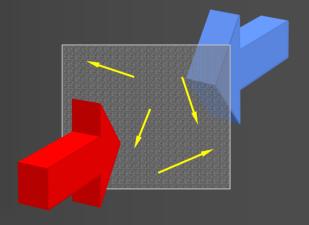


- a)  $t = 24.96 \, \omega_{\rm p}^{-1}$ ,
- b)  $t = 40.56 \, \omega_p^{-1}$ ,
- c)  $t = 64.48 \, \omega_{\rm p}^{-1}$ ,
- d)  $t = 100.88 \, \omega_{\rm p}^{-1}$

# Face-on: Magnetic Field



$$\gamma \mathbf{v} = 10 \mathbf{c}$$

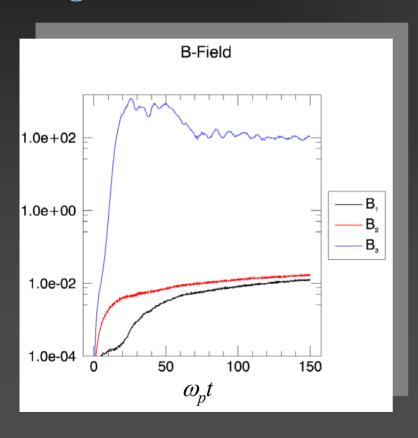


- a)  $t = 24.96 \omega_{D}^{-1}$ ,
- b)  $t = 40.56 \, \omega_{\rm p}^{-1}$ ,
- c)  $t = 64.48 \, \omega_p^{-1}$ ,
- d)  $t = 100.88 \omega_{p}^{-1}$

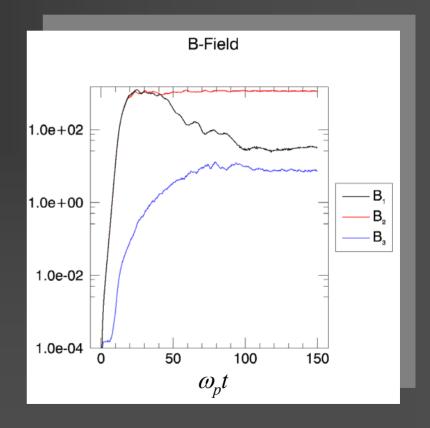
# 2D Magnetic Field Strength

 $\gamma v = 10 c$ 

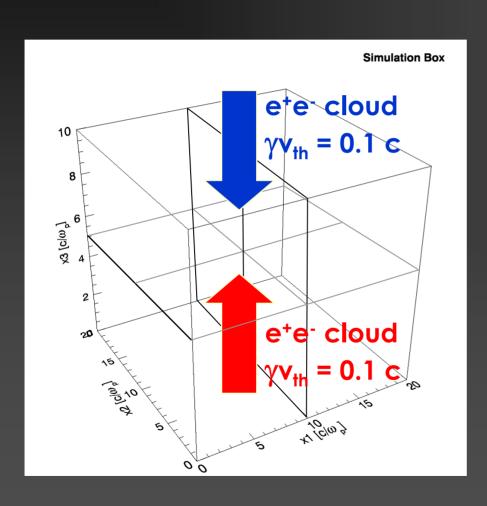
#### Edge-on



#### Face-on



### **3D Simulation Parameters**



#### > 3D Simulation

```
105 Million particles

256 x 256 x 100 cells

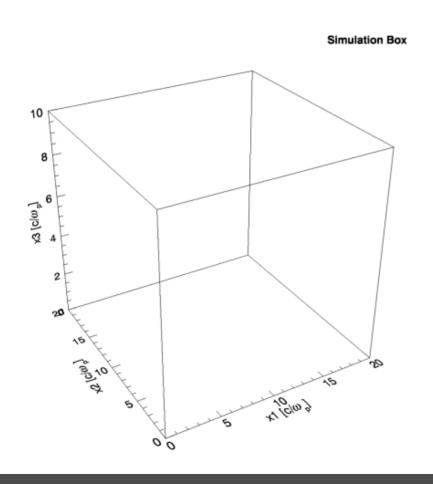
(25.6 x 25.6 x 10 c^3/\omega_p^3

volume)

(6 particles/species/cell)

\gamma v = 0.6 c, 10 c
```

### **Current Filamentation**



$$\gamma \mathbf{v} = \mathbf{0.6} \ \mathbf{c}$$

#### **Iso-surfaces:**

**RED** - positive  $J_z$ 

 $\overline{\text{BLUE}}$  - negative  $J_z$ 

Contours are at  $n = 1.1 n_0$ 

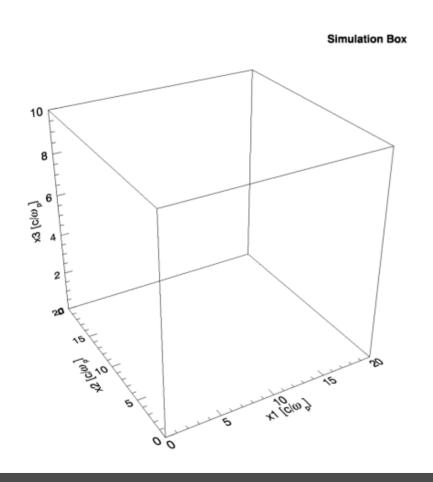
a) 
$$t = 10.1 \omega_p^{-1}$$
,

o) 
$$t = 20.8 \, \omega_p^{-1}$$
,

c) 
$$t = 50.96 \, \omega_{\rm p}^{-1}$$
,

d) 
$$t = 100.88 \, \omega_p^{-1}$$

# Magnetic Filaments



$$\gamma \mathbf{v} = \mathbf{0.6} \ \mathbf{c}$$

#### **Iso-surfaces:**

From RED to GREEN:

0.1 - 0.025 - 0.01 - 0.006

a) 
$$t = 10.1 \, \omega_{p}^{-1}$$
,

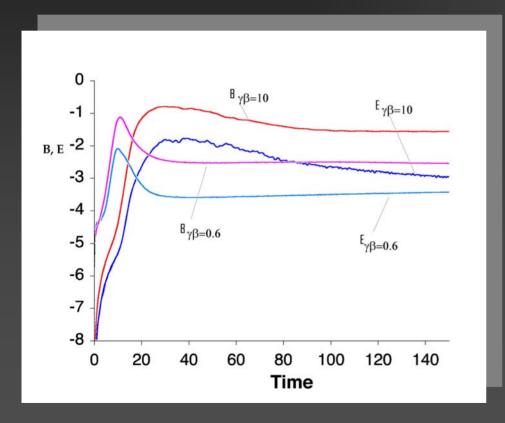
o) 
$$t = 20.8 \, \omega_{\rm p}^{-1}$$
,

c) 
$$t = 50.96 \, \omega_{\rm p}^{-1}$$
,

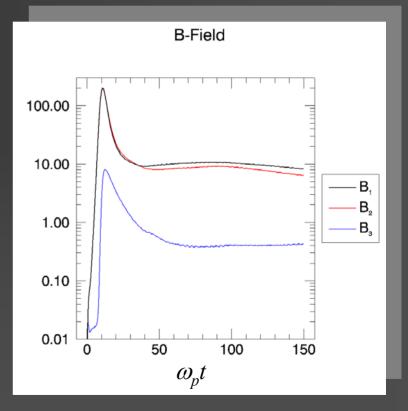
d) 
$$t = 100.88 \, \omega_p^{-1}$$

# Field Strength

 $Log(B^2,E^2/8\pi E_{kin})$ 



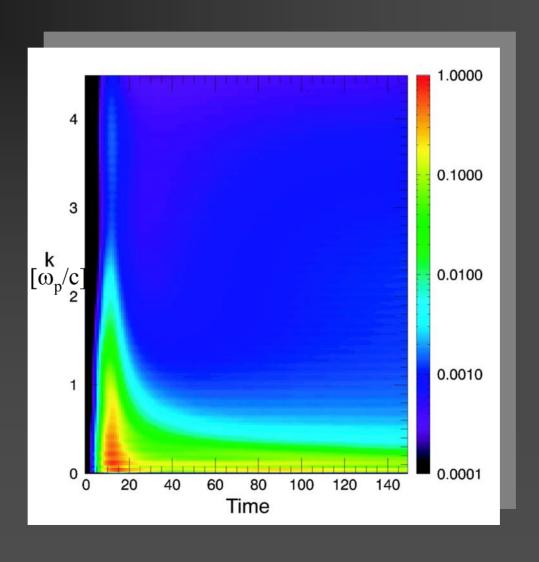
#### Field components



### 3D

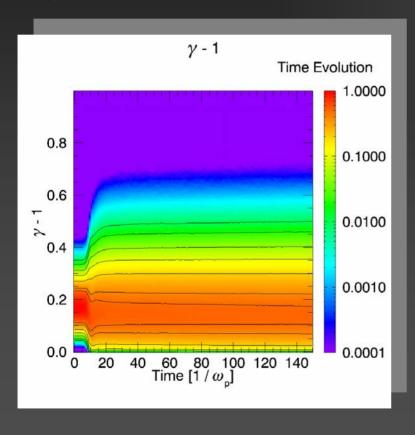
# Field Spectrum

 $\gamma v = 10 c$ 

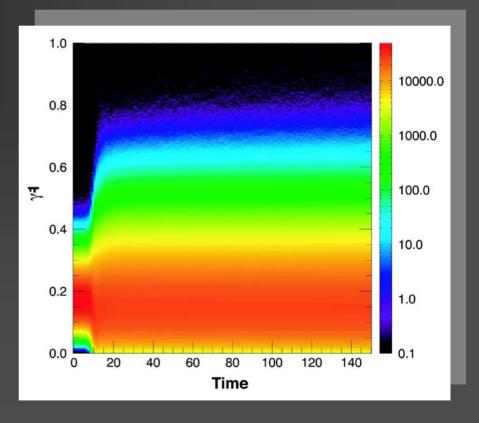


## Particle Distribution

$$\gamma \mathbf{v} = \mathbf{0.6} \ \mathbf{c}$$



$$\gamma v = 10 c$$



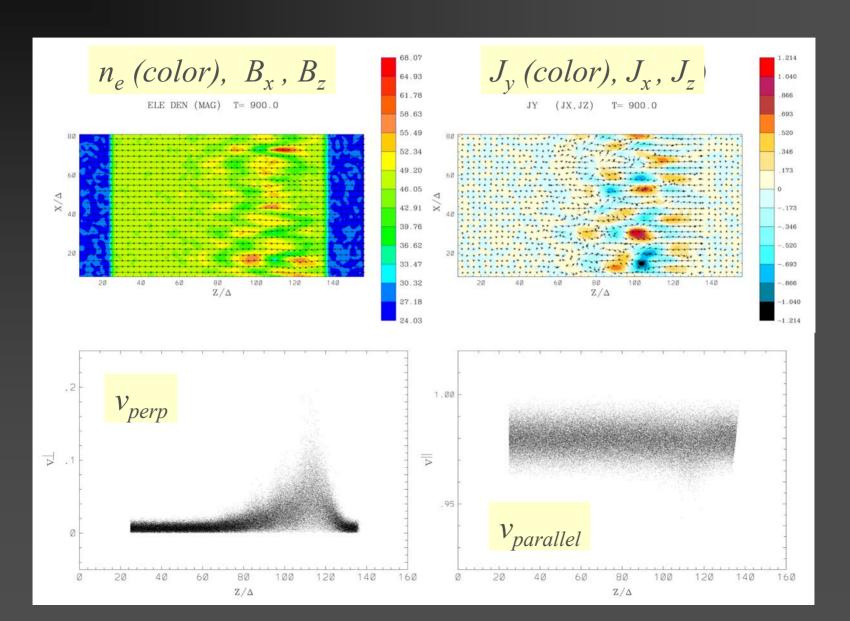
# Fully 3D PIC e-- "ion" Simulations

K.-I. Nishikawa, P. Hardee, G. Richardson, R. Preece, H. Sol, G. J. Fishman

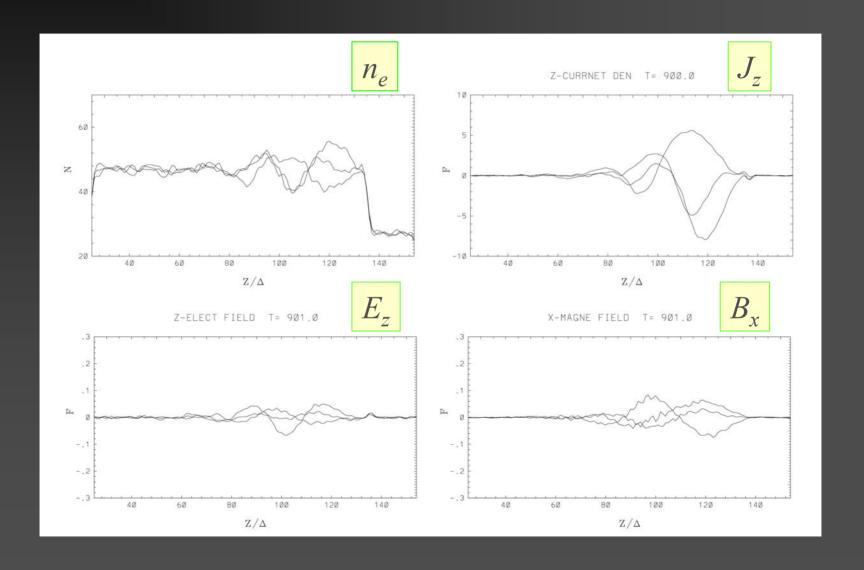
### Modified TRISTAN Code

- Relativistic, electromagnetic, 3D, PIC code
- m<sub>i</sub>/m<sub>e</sub>=20
- 85x85x160 grid, 85 million particles
- $n_{inj}=0.7n_0$ ,  $\gamma_{inj}=5$ ,  $v_{th}=0.1v_{inj}$ ,  $M_A=12.7$

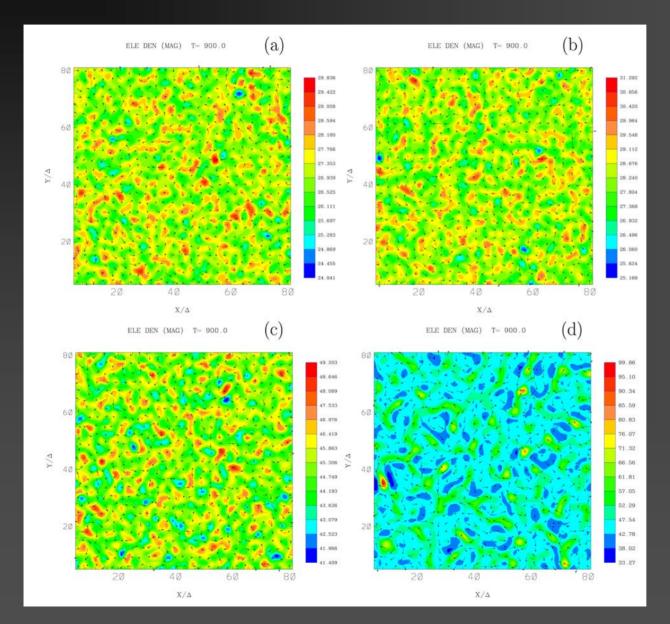
#### Formation of a shock



## Formation of a shock (cont.)



#### Shock head: face-on slices



$$n_e$$
,  $(B_x, B_y)$ 

$$at$$

$$Z/\Delta = 140$$

$$137$$

$$134$$

$$120$$

# Summary on Magnetic Field

- Magnetic field is produced
- Field geometry
  - Random, but mostly in the plane of a shock
  - Small-scale, compared to dynamical
  - > Evolves to larger scales
- Field strength
  - Sub-equipartition,  $\varepsilon_B < 0.1$
  - ► Evolves to & saturates at  $\varepsilon_B$  = 10<sup>-3</sup> ... 10<sup>-4</sup>
- No decay on plasma time-scale

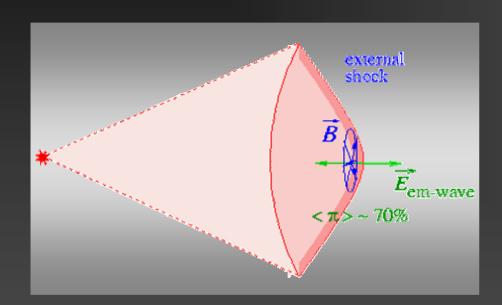
#### **Observational Predictions**

Polarization of beamed afterglows

Scintillations of polarization of radio afterglows

Novel emission mechanism :
Jitter radiation

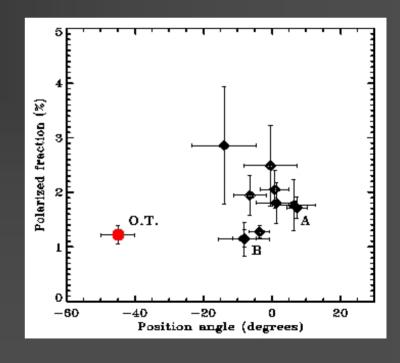
# Polarization of Afterglows



GRB 990510

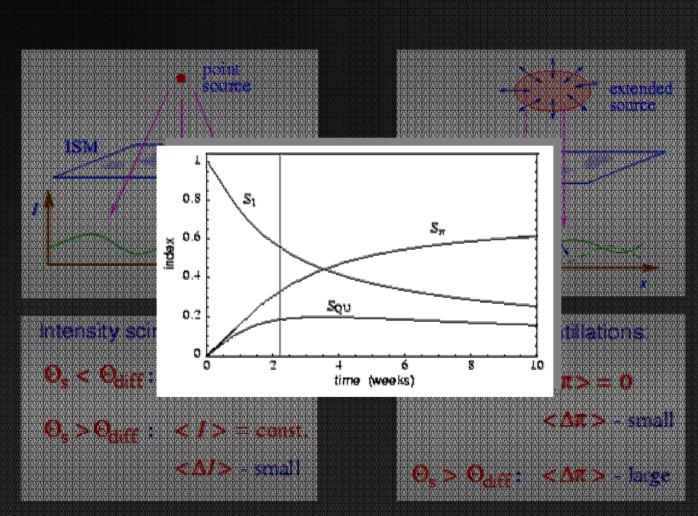
polarization of optical transient

#### Beamed ejecta (jet)



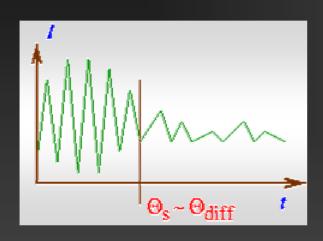
(Covino at al. 1999; Wijers et al. 1999)

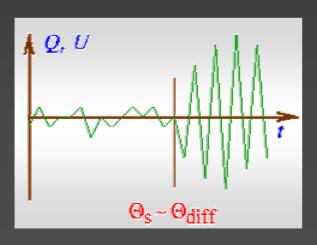
### Polarization Scintillation

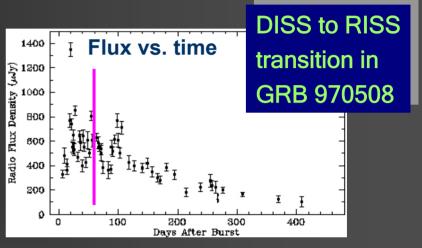


(Medvedev & Loeb 1999; Medvedev 2000)

### Polarization Scintillatons of GRBs







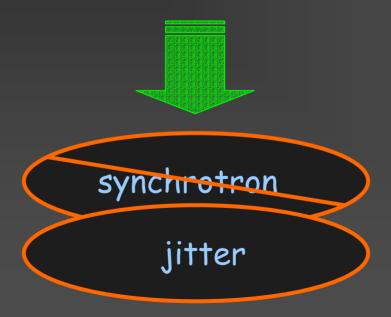
(Frail, Waxman, Kulkarni 1999)

No detection yet;

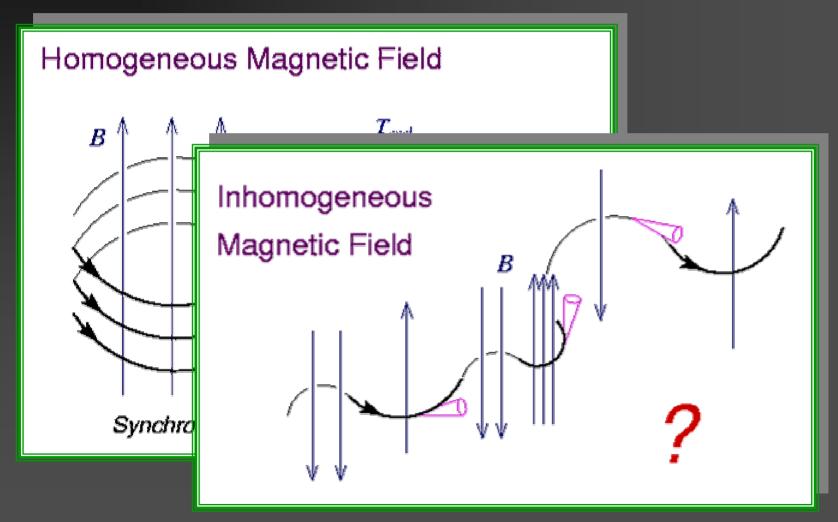
upper limit :  $<\pi>$  < 10%

# Testing Theory

Spectrum of radiation emitted by accelerated particles in a small-scale, tangled magnetic field



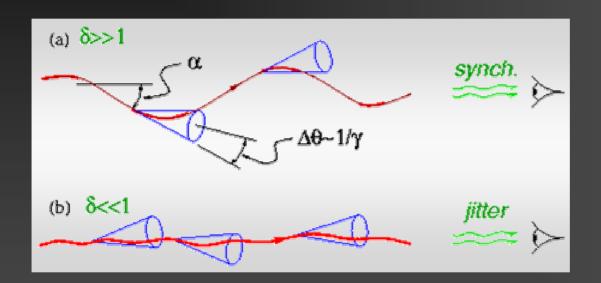
## Synchrotron Vs. Jitter Radiation



### Jitter Radiation

Radiation from small-scale fields

# Regimes



$$\omega_{\rm s} \sim \gamma^2 \omega_{\rm H}$$

$$\omega_j \sim \gamma^2 c/\lambda$$

$$\frac{\delta}{\Delta \theta} = \frac{eB\lambda}{mc^2}$$

... independent of  $\gamma$  !

## Jitter Radiation. Theory

- Ultra-relativistic e<sup>-</sup>: velocity v = novst, acceleration w = √ varies
- Liénard-Wiechart potentials
  - → total energy emitted per unit solid angle per unit frequency:

$$dV = \frac{e^2}{2\pi e^2} \left(\frac{\omega}{\omega}\right)^4 \ln \times \left[\left(n - \frac{\mathbf{v}}{e}\right) \times \mathbf{w}_J\right]^2 d\Omega \frac{d\omega}{2\pi}$$

Here  $\omega = \omega (1 - n \cdot v/c)$ , it points to the observer, and  $w_{\omega} = v w e^{i\omega} dc$ .

- Integrate over 27 \(\times \text{0.12} \) 2 is with \$i \(\times \text{1.75} \), \$i \(\times \text{0.75} \) is \$i\$.
  - Spectral power:  $P(\omega) = dW/(T d\omega)$ :

$$P(\omega) = rac{e^2}{2c} \, \delta^2 rac{\omega_j}{\gamma^2} rac{ar{B}_{SS}^2}{ar{B}_e^2} \, J\!\left(\!rac{\omega}{\omega_j}\!
ight),$$

Ac where

$$\omega_j = \gamma^2 k_{Be} c = 2^{7/4} \gamma^2 \gamma_{\rm int} \bar{\gamma}_e^{-1/2} \omega_{pe},$$

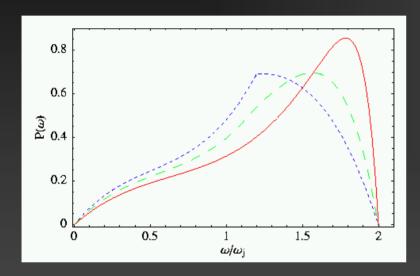
and

$$J(\xi) = (2\mu + 1)\xi^{2\mu} \left[ I(\min[2;\,\xi/\delta]) - I(\xi) \right], \ \ I(\xi) = I\,\xi^{-2\mu} \left( 1 - \xi + \xi^2/2 \right) \, d\xi$$

Total emitted power:

$$dW/dt = (2/3)r_e^2 c \gamma^2 \bar{B}_{SS}^2$$

# Jitter Spectra ( $F_{\nu}$ )

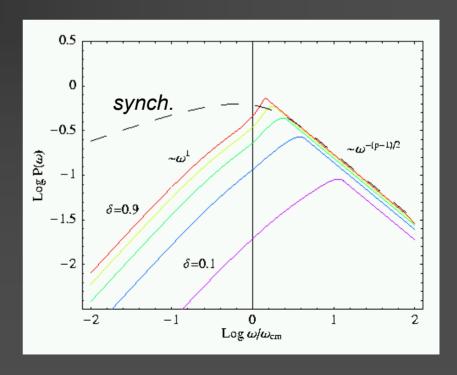


 $B_k \sim k^{\mu}, \quad 0 < k < k_{\text{max}}, \mu > 1$ 

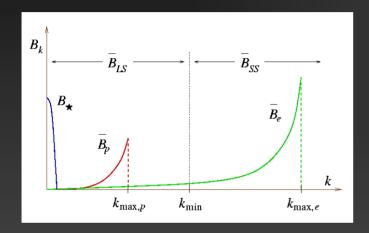
 $N(\gamma) \sim \gamma^{-p}, \quad \gamma > \gamma_{\min}$ 

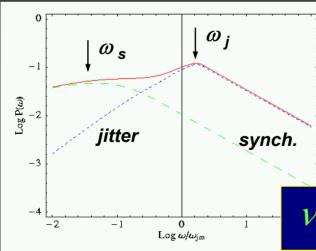
#### Single electron

#### **Power-law electrons**



# Composite Model of GRB Spectra





Frequencies

$$\frac{\omega_j}{\omega_s} = \frac{3}{2} \frac{B_{SS}}{B_{LS}} \delta$$

#### Fluxes

$$\frac{F_{J,\text{max}}}{F_{S,\text{max}}} = f(p,\mu) \delta^2$$

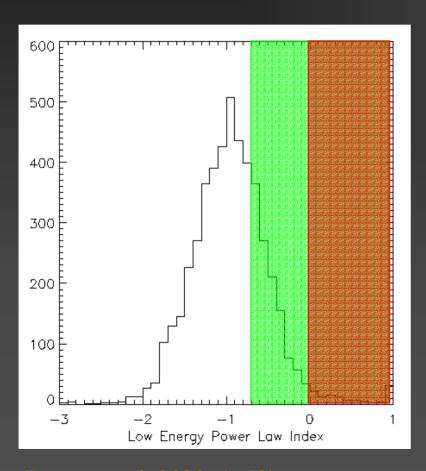
$$\delta \approx \sqrt{\varepsilon_B}$$

Break

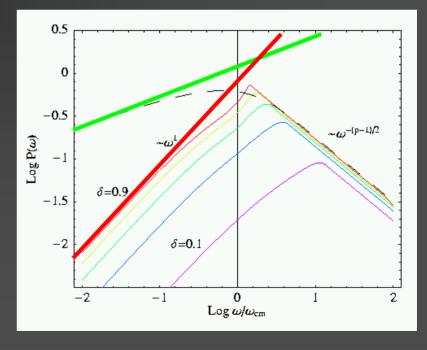
$$\nu_j \approx 6 \times 10^9 \ \gamma_{\min}^2 \ \Gamma_{\text{sh}} \ \Gamma_{\text{int}} \ \overline{\gamma}_e^{-1/2} \ n_{e,10}^{1/2} \ \text{Hz}$$

# Synchrotron "Line of Death"

About 30% of BATSE GRBs and 50% of BSAX GRBs have photon soft indices  $\alpha$  greater than -2/3, inconsistent with optically thin Synchrotron Shock Model



$$F_{\nu} \sim \nu^{\alpha}$$

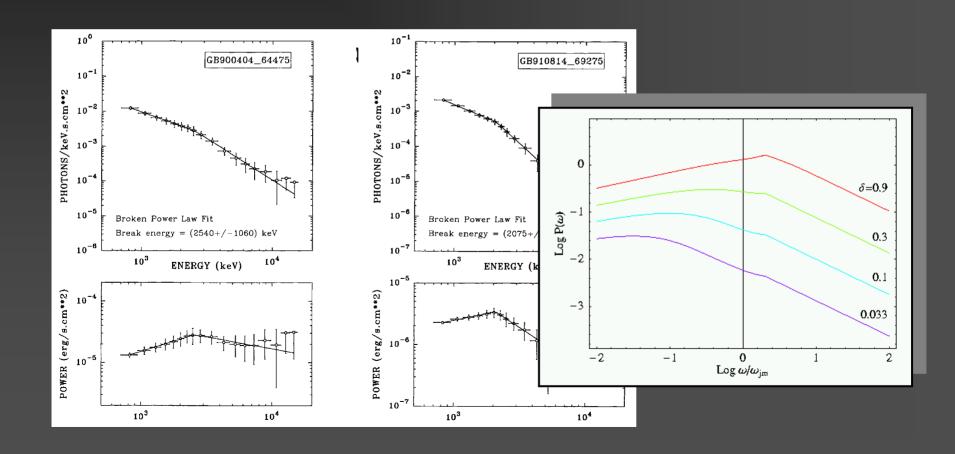


(Preece, et al. 2000, ApJS)

### "Broken Power-Law" Bursts

Many bursts are:

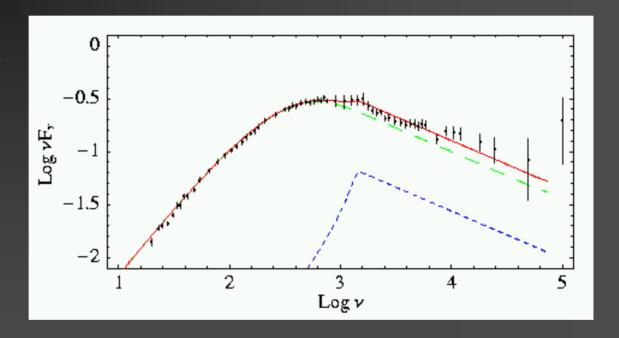
- better fit with a BPL spectral model
- inconsistent with a broad Synch. peak



#### "GRB Lines"

Emission features: ~ 10 highly significant line candidates out of 117 GRBs

**GRB 910503** 



- Spectral shape fit:  $(B_{LS}/B_{SS})^2 = 7$ ,  $\delta = 0.07$
- ✓ Deduce  $\mathcal{E}_B = 4$ .  $10^{-4}$  (consistent with  $\mathcal{E}_B << 10^{-2}$ ; no cooled electrons)

#### More tests to do...

- Correlation of  $\alpha$  with a spectral model GRBs with larger  $\alpha$  (i.e. violating LoD) may be better fit with the BPL model (sharper break)
- look for emission features near  $E_p$  if they exist, determine  $\delta$  and other parameters
- spectral model evolution in time
- > are short bursts BPL or BAND?

#### Conclusions

- Theory of Collisionless ultra-relativistic shocks
  - explains origin of Magnetic Field
  - validates MHD for the shocks
  - predicts / explains Polarization detection
  - predicts Polarization Scintillations
  - predicts novel <u>Jitter radiation</u>
    - explains "Line of Death" violation
    - explains nature of BPL spectra
    - explains "GRB Line" emission features
  - provides a way to study conditions in a fireball